Generalized pentagram maps via Q-nets

作者:沈守枫发布时间:2024-08-16浏览次数:30

报告人:王宝(宁波大学)
报告时间:2024.8.16/10:30-11:30
报告地点:广A205
报告摘要:We introduce a family of generalizations of the pentagram maps related to Q-nets. We find the map can be treated as a refactorization mapping in the Poisson-Lie group of pseudo-difference operators. Using this description, we obtain the corresponding Lax form with a spectral parameter and invariant Poisson brackets. Finally, we consider the reduction to B-nets and the discrete BKP equation.
报告人简介:

研究方向:

1.可积系统的几何方面 Geometric aspects of integrable systems

2.非线性方程的对称分析和守恒律Symmetry analysis and conservation laws of nonlinear equations

教育背景:

2014.09-2019.06    中国科学院数学与系统科学研究院 博士生

2010.09-2014.06    北京科技大学数学系  本科生

访学经历:

2019.08-2020.10  加拿大布鲁克大学数学系

代表性论文与出版物:

1. B. Wang, X. K. Chang, X. B. Hu, and S. H. Li. On moving frames and Toda lattices of BKP and CKP types. J. Phys. A, 51(324002), 2018.

2. B. Wang, X. K. Chang, X. B. Hu, and S. H. Li. Discrete invariant curve flows, orthogonal polynomials, and moving frame. Int. Math. Res. Not., rnz379, 2020.

3. S. C. Anco, B. Wang. Geometrical Formulation for Adjoint-Symmetries of Partial Differential Equations. Symmetry, 2020, 12(9): 1547.