A class of efficient spectral methods and error analysis for nonlinear Hamiltonian systems

作者:徐敏强发布时间:2024-10-10浏览次数:10

报告人:曹外香 教授(北京师范大学)
报告时间:10.14/19:00-20:00
报告地点:#腾讯会议:217-707-089
报告摘要:In this talk, we investigate efficient numerical methods for  nonlinear  Hamiltonian systems. Three polynomial spectral methods (including spectral Galerkin, Petrov-Galerkin, and collocation methods) coupled with domain decomposition are presented and  analyzed.   Our main results include the energy and symplectic  structure-preserving properties and error estimates. We prove that the spectral Petrov-Galerkin method preserves the energy exactly while both the spectral Gauss collocation and spect
报告人简介:

曹外香,北京师范大学数学科学学院教授,美国布朗大学访问学者,研究方向为偏微分方程数值解法和数值分析,主要研究有限元方法、有限体积方法,间断有限元方法高效高精度数值计算。主要结果发表在SIAM J. Numer. Anal., Math. Comp.,  J. Sci. Comput. 等期刊上。曾获中国博士后基金一等资助和特别资助,广东省自然科学二等奖,主持国家自然科学基金面上项目、国家自然科学基金青年基金等项目。