“走近数学.感受思维魅力”系列分享会:Bi-Lipschitz embeddings of attractors defined on multi-dimensional bounded domains

作者:朱佳惠发布时间:2024-11-06浏览次数:95

报告人:孙春友 教授(东华大学 数学与统计学院)
报告时间:2024.11.08 / 9:30-10:30
报告地点:腾讯会议:500-499-908
报告摘要:It is well-known that the finite dimensional reduction can be realized via by constructing bi-Lipschitz Man\'e projections or inertial manifolds for dissipative PDEs, and the known applications were mainly restricted to the PDEs defined on periodic domains with dimension two or three, and usually no longer valid for case such as the space dimensions $d\geq 4$ or general bounded domains. This talk will report our recent attampt in this direction, especially, for some special case, we provide a cr
报告人简介:

孙春友,东华大学教授、博士生导师。主要从事无穷维动力系统、非线性泛函分析的研究工作。相关工作发表在《Izv. Math.》、《Math. Ann.》、《Trans. Amer. Math. Soc. 》、《Indiana Univ. Math. J. 》、《SIAM J. Math. Anal.》、《J. Differential Equations》、《SIAM J. Applied Dynamical Systems》、《Pro. Royal Society of Edinburgh》等本领域国际知名学术期刊上。