Analysis and computation for quenching solution to the time-space fractional Kawarada problem

作者:何彬彬发布时间:2025-05-12浏览次数:10

报告人:李常品 教授(上海大学)
报告时间:2025年05月15日(星期四) 09:30-10:30
报告地点: 理学楼C220
报告摘要:This report focuses on the existence, uniqueness, and quenching behavior of solution to the time-space fractional Kawarada problem, where the time derivative is the Caputo-Hadamard derivative and the spatial derivative is the fractional Laplacian. Then the finite difference scheme is established for solving the quenching solution to the considered problem in one and two space dimensions. The numerical simulations show the effectiveness and feasibility of the theoretical analysis.
报告人简介:

李常品,上海大学数学系教授、博士生导师、伟长学者,Fellow of the Institute of Mathematics and its Applications, UK. 2021年获上海大学王宽诚育才奖,2017年和2010年获上海市自然科学奖,2016年入选上海市优秀博士学位论文指导教师,2012年获分数阶微积分领域的黎曼-刘维尔理论文章奖,2011年获宝钢优秀教师奖. 主要研究方向为分数阶偏微分方程数值解、分岔混沌的应用理论和计算. 在World Scientific出版编著一部,在Chapman and Hall/CRC和SIAM出版专著各一部,在科学出版社出版译著一部等. 在JCP、JNLS、JSC、Phys. D、PRE、SIAM journals等SCI杂志上发表170余篇文章,他引8000余次.任德国德古意特出版社系列丛书《Fractional Calculus in Applied Sciences and Engineering》创始主编和多个国际SCI杂志编委